Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern web services rely heavily on REST APIs, typically documented using the OpenAPI specification. The widespread adoption of this standard has resulted in the development of many black-box testing tools that generate tests based on OpenAPI specifications. Although Large Language Models (LLMs) have shown promising test-generation abilities, their application to REST API testing remains mostly unexplored. We present LlamaRestTest, a novel approach that employs two custom LLMs-created by fine-tuning and quantizing the Llama3-8B model using mined datasets of REST API example values and inter-parameter dependencies-to generate realistic test inputs and uncover inter-parameter dependencies during the testing process by analyzing server responses. We evaluated LlamaRestTest on 12 real-world services (including popular services such as Spotify), comparing it against RESTGPT, a GPT-powered specification-enhancement tool, as well as several state-of-the-art REST API testing tools, including RESTler, MoRest, EvoMaster, and ARAT-RL. Our results demonstrate that fine-tuning enables smaller models to outperform much larger models in detecting actionable parameter-dependency rules and generating valid inputs for REST API testing. We also evaluated different tool configurations, ranging from the base Llama3-8B model to fine-tuned versions, and explored multiple quantization techniques, including 2-bit, 4-bit, and 8-bit integer formats. Our study shows that small language models can perform as well as, or better than, large language models in REST API testing, balancing effectiveness and efficiency. Furthermore, LlamaRestTest outperforms state-of-the-art REST API testing tools in code coverage achieved and internal server errors identified, even when those tools use RESTGPT-enhanced specifications. Finally, through an ablation study, we show that each component of LlamaRestTest contributes to its overall performance.more » « lessFree, publicly-accessible full text available June 19, 2026
-
Free, publicly-accessible full text available April 27, 2026
-
User-defined functions (UDFs) are widely used to enhance the ca- pabilities of DBMSs. However, using UDFs comes with a significant performance penalty because DBMSs treat UDFs as black boxes, which hinders their ability to optimize queries that invoke such UDFs. To mitigate this problem, in this paper we present LAMBDA, a technique and framework for improving DBMSs’ performance in the presence of UDFs. The core idea of LAMBDA is to statically infer properties of UDFs that facilitate UDF processing. Taking one such property as an example, if DBMSs know that a UDF is pure, that is it returns the same result given the same arguments, they can leverage a cache to avoid repetitive UDF invocations that have the same call arguments. We reframe the problem of analyzing UDF properties as a data flow problem. We tackle the data flow problem by building LAMBDA on top of an extensible abstract interpretation framework and de- veloping an analysis model that is tailored for UDFs. Currently, LAMBDA supports inferring four properties from UDFs that are widely used across DBMSs. We evaluate LAMBDA on a benchmark that is derived from production query workloads and UDFs. Our evaluation results show that (1) LAMBDA conservatively and ef- ficiently infers the considered UDF properties, and (2) inferring such properties improves UDF performance, with a time reduction ranging from 10% to 99%. In addition, when applied to 20 produc- tion UDFs, LAMBDA caught five instances in which developers provided incorrect UDF property annotations. We qualitatively compare LAMBDA against Froid, a state-of-the-art framework for improving UDF performance, and explain how LAMBDA can opti- mize UDFs that are not supported by Froid.more » « less
An official website of the United States government
